Add like
Add dislike
Add to saved papers

Magnetic exchange interactions at the proximity of a superconductor.

Interfacing magnetism with superconductivity gives rise to a wonderful playground for intertwining key degrees of freedom: Cooper pairs, spin, charge, and spin-orbit interaction, from which emerge 
a wealth of exciting phenomena, fundamental in the nascent field of superconducting spinorbitronics and topological quantum technologies. Magnetic exchange interactions (MEI), being isotropic or chiral such as the Dzyaloshinskii-Moriya interactions (DMI), are vital in establishing the magnetic behavior at these interfaces as well as in dictating not only complex transport phenomena, but also the manifestation of topologically trivial or non-trivial objects. Here, we propose a methodology enabling the extraction of the tensor of MEI from electronic structure simulations accounting for superconductivity. We apply our scheme to the case of a Mn layer deposited on Nb(110) surface and explore proximity-induced impact on the MEI. The latter are weakly modified by a realistic electron-phonon coupling. However, tuning the superconducting order parameter, we unveil potential change of the magnetic order accompanied with chirality switching, as induced by the interplay of spin-orbit interaction and Cooper pairing. Owing to its simple formulation, our methodology can be readily implemented in state-of-the-art frameworks capable of tackling superconductivity and magnetism. We thus foresee implications in the simulations and prediction of topological superconducting bits as well as \new{of} cryogenic superconducting hybrid devices involving magnetic units.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app