Add like
Add dislike
Add to saved papers

Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels.

Nano-Micro Letters 2024 March 12
Despite notable progress in thermoelectric (TE) materials and devices, developing TE aerogels with high-temperature resistance, superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge. Herein, a highly elastic, flame-retardant and high-temperature-resistant TE aerogel, made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composites, has been fabricated, displaying attractive compression-induced power factor enhancement. The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring. Subsequently, a flexible TE generator is assembled, consisting of 25 aerogels connected in series, capable of delivering a maximum output power of 400 μW when subjected to a temperature difference of 300 K. This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines. Moreover, the designed self-powered wearable sensing glove can realize precise wide-range temperature detection, high-temperature warning and accurate recognition of human hand gestures. The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability. Benefitting from these desirable properties, the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring, industrial overheat warning, waste heat energy recycling and even wearable healthcare.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app