Add like
Add dislike
Add to saved papers

High-power, electrically-driven continuous-wave 1.55-μm Si-based multi-quantum well lasers with a wide operating temperature range grown on wafer-scale InP-on-Si (100) heterogeneous substrate.

A reliable, efficient and electrically-pumped Si-based laser is considered as the main challenge to achieve the integration of all key building blocks with silicon photonics. Despite the impressive advances that have been made in developing 1.3-μm Si-based quantum dot (QD) lasers, extending the wavelength window to the widely used 1.55-μm telecommunication region remains difficult. In this study, we develop a novel photonic integration method of epitaxial growth of III-V on a wafer-scale InP-on-Si (100) (InPOS) heterogeneous substrate fabricated by the ion-cutting technique to realize integrated lasers on Si substrate. This ion-cutting plus epitaxial growth approach decouples the correlated root causes of many detrimental dislocations during heteroepitaxial growth, namely lattice and domain mismatches. Using this approach, we achieved state-of-the-art performance of the electrically-pumped, continuous-wave (CW) 1.55-µm Si-based laser with a room-temperature threshold current density of 0.65 kA/cm-2 , and output power exceeding 155 mW per facet without facet coating in CW mode. CW lasing at 120 °C and pulsed lasing at over 130 °C were achieved. This generic approach is also applied to other material systems to provide better performance and more functionalities for photonics and microelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app