Add like
Add dislike
Add to saved papers

Ratiometric electrochemical immunoassay based on 2D Co/Fe MOF decorated with toluidine blue and Fc-labeled Schiff base for accurate assay of alpha-fetoprotein in clinical serum.

Talanta 2024 March 6
The high level of alpha-fetoprotein (AFP) expression is closely related to hepatocellular carcinoma (HCC). Herein, a dual signal ratiometric electrochemical immunosensor based on chitosan-ferrocenecarboxaldehyde-spindle gold (Chit-Fc-SAu) and Co/Fe metal-organic framework-toluidine blue/polydopamine (Co/Fe MOF-TB/PDA) was proposed for quantitative analysis of AFP. Specifically, Chit-Fc-SAu worked as a substrate to trap more primary antibodies (Ab1 ) generating the first electrochemical signal from Fc. Thanks to the large specific surface area, the synergistic and electronic effects of Co/Fe MOF nanosheets, and the rich functional groups of PDA, Co/Fe MOF-TB/PDA could load more secondary antibodies (Ab2 ) and signal molecules (TB) providing another amplified electrochemical signal. In the presence of AFP, Ab1 -AFP-Ab2 formed a sandwich structure, and as the AFP concentration increased, the peak current ratio of TB to Fc (ITB /IFc ) also increased. The dual signal ratiometric strategy can avoid environmental signal interference and achieve signal self-calibration, thereby improving the accuracy and reproducibility of detection. After a series of exploration, this self-calibrated ratiometric immunosensor exhibited a wide linear range (0.001-200 ng mL-1 ), a low detection limit (0.34 pg mL-1 ), and good repeatability. When applied to the assay of clinical serum samples, the detection results of ratiometric sensor were consistent with that of commercial electrochemiluminescence (ECL) immunoassay, significantly superior to that of non-ratiometric sensor. The self-calibrated strategy based on ratiometric sensor helps to improve the accuracy of AFP in clinical diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app