Add like
Add dislike
Add to saved papers

Filtering dynamical systems using observations of statistics.

Chaos 2024 March 2
We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus, the computational task is to estimate a time-evolving density ρ(v,t) given noisy observations of the true density ρ†; this contrasts with the standard filtering problem based on observations of the state v. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities ρ. However, for the purposes of tractability, we seek algorithms in state space; specifically, we introduce a mean-field state-space model, and using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as the ensemble Fokker-Planck filter (EnFPF). Under certain restrictive assumptions, we show that the EnFPF approximates the Kalman-Bucy filter for the Fokker-Planck equation, which is the exact solution to the infinite-dimensional filtering problem. Furthermore, our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically, the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to turbulence modeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app