Add like
Add dislike
Add to saved papers

Discovery, Structure-Based Modification, In Vitro , In Vivo , and In Silico Exploration of m -Sulfamoyl Benzoamide Derivatives as Selective Butyrylcholinesterase Inhibitors for Treating Alzheimer's Disease.

For the potential therapy of Alzheimer's disease (AD), butyrylcholinesterase (BChE) has gradually gained worldwide interest in the progression of AD. This study used a pharmacophore-based virtual screening (VS) approach to identify Z32439948 as a new BChE inhibitor. Aiding by molecular docking and molecular dynamics, essential binding information was disclosed. Specifically, a subpocket was found and structure-guided design of a series of novel compounds was conducted. Derivatives were evaluated in vitro for cholinesterase inhibition and physicochemical properties (BBB, log  P , and solubility). The investigation involved docking, molecular dynamics, enzyme kinetics, and surface plasmon resonance as well. The study highlighted compounds 27a ( h BChE IC50 = 0.078 ± 0.03 μM) and ( R )- 37a ( h BChE IC50 = 0.005 ± 0.001 μM) as the top-ranked BChE inhibitors. These compounds showed anti-inflammatory activity and no apparent cytotoxicity against the human neuroblastoma (SH-SY5Y) and mouse microglia (BV2) cell lines. The most active compounds exhibited the ability to improve cognition in both scopolamine- and Aβ1-42 peptide-induced cognitive deficit models. They can be promising lead compounds with potential implications for treating the late stage of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app