Journal Article
Review
Add like
Add dislike
Add to saved papers

Atherosclerosis: an overview of mouse models and a detailed methodology to quantify lesions in the aortic root.

Vascular biology. 2024 March 2
Cardiovascular disease, the primary cause of human mortality globally, is predominantly caused by a progressive disorder known as atherosclerosis. Atherosclerosis refers to the process of accumulation of cholesterol-enriched lipoproteins and the concomitant initiation of inflammatory processes in the arterial wall, including recruitment of immune cells. This leads to the formation of atherosclerotic plaques, initially causing a thickening of the arterial wall and narrowing of arteries. However, as plaque formation progresses, atherosclerotic plaques may become unstable and rupture, leading to a blood clot that blocks the affected artery or travels through the blood to block blood flow elsewhere. In the early 1990s, emerging gene editing methods enabled the development of apolipoprotein E knockout (Apoe-/-) and low-density lipoprotein receptor knockout (Ldlr-/-) mice. These mice have been instrumental in unraveling the complex pathogenesis of atherosclerosis. Around the same time, human APOE*3-Leiden transgenic mice were generated, which were more recently cross-bred with human cholesteryl ester transfer protein (CETP) transgenic mice to generate APOE*3-Leiden.CETP mice. This model appeared to closely mimic human lipoprotein metabolism, and responds to classic lipid lowering interventions due to an intact ApoE-LDLR pathway of lipoprotein remnant clearance. In this review, we describe the role of lipid metabolism and inflammation in atherosclerosis development and highlight the characteristics of the frequently used animal models to study atherosclerosis, with focus on mouse models, discussing their advantages and limitations. Moreover, we present a detailed methodology to quantify atherosclerotic lesion area within the aortic root region of the murine heart, as well as details required for scoring atherosclerotic lesion severity based on guidelines of the American Heart Association adapted for mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app