Add like
Add dislike
Add to saved papers

Safety and performance of a novel subxiphoidal pacemaker system.

BACKGROUND: Traditional cardiac pacemakers commonly have a range of complications related to the presence of intracardiac leads. A new class of extravascular and leadless pacemakers has recently emerged with the potential to mitigate these complications and expand access to cardiac pacing. The objective of this study is to evaluate the implantation, short-term chronic safety, and performance of a novel subxiphoidal extracardiac pacemaker.

METHODS: Normal Yorkshire Cross swine (n = 16) were implanted with the subxiphoidal pacemaker. The pacemaker was inserted through a midline chest incision and clipped to the underside of the sternum, with the stimulation electrode placed on the anterior pericardium. Animals were chronically paced and followed for 90 days post-implant, with periodic measurement of pacing capture threshold (PCT) and electrode impedance.

RESULTS: All 16 animals were successfully implanted with the study device. At implant, a consistent average PCT of 2.2 ± 0.4 V at a pulse width of 1.0 ms was observed in all animals, with an average implant impedance of 648 ± 44 Ω. Chronic pacing was programmed at a rate of 60 bpm, an amplitude of 3.4 ± 0.7 V, and a pulse width of 1.0 ms. PCT rose to 4.6 ± 0.8 V at 14 days and stabilized; at 90 days, PCT was 3.8 ± 1.2 V and electrode impedance was 533 ± 105 Ω. All implanted animals completed the study with no clinically significant findings, no clinically significant abnormalities, and with no adverse events that affected animal welfare.

CONCLUSIONS: This study demonstrated the safety and feasibility of a novel subxiphoidal extracardiac pacemaker to deliver short-term chronic extravascular therapy. Further studies are required to assess the safety, feasibility, and long-term chronic pacing performance in human subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app