Add like
Add dislike
Add to saved papers

Deep learning for enhanced prosthetic control: Real-time motor intent decoding for simultaneous control of artificial limbs.

The development of advanced prosthetic devices that can be seamlessly used during an individual's daily life remains a significant challenge in the field of rehabilitation engineering. This study compares the performance of deep learning architectures to shallow networks in decoding motor intent for prosthetic control using electromyography (EMG) signals. Four neural network architectures, including a feedforward neural network with one hidden layer, a feedforward neural network with multiple hidden layers, a temporal convolutional network, and a convolutional neural network with squeeze-and-excitation operations were evaluated in real-time, human-in-the-loop experiments with able-bodied participants and an individual with an amputation. Our results demonstrate that deep learning architectures outperform shallow networks in decoding motor intent, with representation learning effectively extracting underlying motor control information from EMG signals. Furthermore, the observed performance improvements by using deep neural networks were consistent across both able-bodied and amputee participants. By employing deep neural networks instead of a shallow network, more reliable and precise control of a prosthesis can be achieved, which has the potential to significantly enhance prosthetic functionality and improve the quality of life for individuals with amputations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app