Add like
Add dislike
Add to saved papers

Development of cationic solid lipid nanoparticles incorporating cholesteryl-9-carboxynonanoate (9CCN) for delivery of antagomiRs to macrophages.

Lipid-based nanoparticles are a useful tool for nucleic acids delivery and have been regarded as a promising approach for diverse diseases. However, off-targets effects are a matter of concern and some strategies to improve selectivity of solid lipid nanoparticles (SLNs) were reported. The goal of this study was to test formulations of SLNs incorporating lipid cholesteryl-9-carboxynonanoate (9CCN) as "eat-me" signal to target antagomiR oligonucleotides to macrophages. We formulate four SLNs, and those with a mean diameter of 200 nm and a Z-potential values between 25 and 40 mV, which allowed the antagomiR binding, were selected for in vitro studies. Cell viability, transfection efficiency and cellular uptake assays were performed within in vitro macrophages using flow cytometry and confocal imaging and the SLNs incorporating 25 mg of 9CCN proved to be the best formulation. Subsequently, we used a labeled antagomiR to study tissue distribution in in-vivo ApoE-/- model of atherosclerosis. Using the ApoE-/- model we demonstrated that SLNs with phagocytic signal 9-CCN target macrophages and release the antagomiR cargo in a selective way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app