Add like
Add dislike
Add to saved papers

Markers of fertility in reproductive microbiomes of male and female endangered black-footed ferrets (Mustela nigripes).

Communications Biology 2024 Februrary 24
Reproductive microbiomes contribute to reproductive health and success in humans. Yet data on reproductive microbiomes, and links to fertility, are absent for most animal species. Characterizing these links is pertinent to endangered species, such as black-footed ferrets (Mustela nigripes), whose populations show reproductive dysfunction and rely on ex-situ conservation husbandry. To understand microbial contributions to animal reproductive success, we used 16S rRNA amplicon sequencing to characterize male (prepuce) and female (vaginal) microbiomes of 59 black-footed ferrets at two ex-situ facilities and in the wild. We analyzed variation in microbiome structure according to markers of fertility such as numbers of viable and non-viable offspring (females) and sperm concentration (males). Ferret vaginal microbiomes showed lower inter-individual variation compared to prepuce microbiomes. In both sexes, wild ferrets harbored potential soil bacteria, perhaps reflecting their fossorial behavior and exposure to natural soil microbiomes. Vaginal microbiomes of ex-situ females that produced non-viable litters had greater phylogenetic diversity and distinct composition compared to other females. In males, sperm concentration correlated with varying abundances of bacterial taxa (e.g., Lactobacillus), mirroring results in humans and highlighting intriguing dynamics. Characterizing reproductive microbiomes across host species is foundational for understanding microbial biomarkers of reproductive success and for augmenting conservation husbandry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app