Add like
Add dislike
Add to saved papers

Design, synthesis, and antiproliferative evaluation of novel dehydroabietic acid-1,2,3-triazole-oxazolidinone hybrids.

RSC medicinal chemistry. 2024 Februrary 22
A series of novel dehydroabietic acid derivatives containing both 1,2,3-triazole and oxazolidinone 4a-4t have been synthesized and their antiproliferative activity in vitro against HeLa, HepG2, MGC-803 and T-24 cell lines evaluated. Most of them displayed cell proliferation inhibition on four tested human malignant tumour cell lines to some degree. Among them, compound 4p exhibited promising cytotoxicity with IC50 values ranging from 3.18 to 25.31 μM and weak cytotoxicity toward normal cells. The mechanism of action of 4p was then studied using flow cytometry, Hoechst 33258 staining, ROS generation assay, and JC-1 mitochondrial membrane potential staining, which illustrated that compound 4p induced apoptosis, arrested mitotic process at the G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased intracellular ROS levels. In summary, the introduction of an oxazolidinone group via a "1,2,3-triazole" linker significantly improved the antitumor activity of dehydroabietic acid, and deserves to be further investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app