Add like
Add dislike
Add to saved papers

Photo-Driven In Situ Solidification of Whole Cells through Inhibition of Trogocytosis for Immunotherapy.

Achieving antitumor immunotherapy based on hybridization of multiple types of inactivated cells has attracted a lot of attention. However, the hybridized cells of disordered structure could result in the shedding of antigens and their transfer to immune cells, which suppresses tumor immunity through trogocytosis. Here, we report a strategy for in situ solidification of tumor whole cell by biomineralization for sustained stimulation of antitumor immunity. The near-infrared light was used to accelerate the breaking of Au=P bonds in auranofin, and the exposed Au atoms biomineralize at the secondary structure (β-corner) of the protein to form Au nanocrystals with in situ protein coronas in tumor cells. Au nanocrystals are anchored to the tumor cells through protein coronas, which fixes the morphology and antigens of whole tumor cells, rendering them physiologically inactive. Interestingly, this solidified tumor cell prevents immune cells from undergoing trogocytosis, which inhibits proximal and distal tumor growth. Thus, this study presents the strategy of solidified cells and its potential application in tumor immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app