Add like
Add dislike
Add to saved papers

Continuous rise in oxygen consumption during prolonged military loaded march in the heat with and without fluid replacement: a pilot study.

BMJ military health. 2024 Februrary 20
INTRODUCTION: V̇O2 drift, the rise in oxygen consumption during continuous exercise, has not been adequately reported during prolonged military marches. The purpose of this study was to analyse V̇O2 and energy expenditure (EE) during a loaded march with and without rehydration efforts. Second, the study aimed to compare EE throughout the march with predicted values using a validated model.

METHODS: Seven healthy men (23±2 years; V̇O2max : 50.8±5.3 mL/kg/min) completed four 60 min loaded marches (20.4 kg at 50% V̇O2max ) in a warm environment (30°C and 50% relative humidity). Three were preceded by hypohydration via a 4-hour cold water immersion (18°C). The control (CON) visit was a non-immersed euhydrated march. After water immersion, subjects were rehydrated with 0% (NO), 50% (HALF) or 100% (FULL) of total body mass lost. During exercise, V̇O2 and EE were collected and core temperature change was calculated. To determine if EE could be accurately predicted, values were compared with a calculated estimate using the US Army Load Carry Decision Aid (LCDA).

RESULTS: At the start of exercise, there was no difference between conditions in V̇O2 (ALL: 24.3±0.3 mL/kg/min; p=0.50) or EE (ALL: 8.6±1.0 W/kg; p=0.68). V̇O2 (p=0.02) and EE (p<0.01) increased during exercise and were 12.3±10.0% and 12.8±9.5% greater, respectively, at 60 min across all trials and were not mitigated by rehydration amount. There was an effect of core temperature change on V̇O2 for each condition (CON: r=0.62; NO: r=0.47; HALF: r=0.70; FULL: r=0.55). LCDA-predicted values were different from measured EE during exercise.

CONCLUSION: V̇O2 drift occurred during loaded military marches and was associated with increases in EE and core temperature change. Pre-exercise hypohydration with water immersion followed by rehydration did not influence the degree of drift. LCDA prediction of EE may not agree with measured values during prolonged loaded marches where V̇O2 drift occurs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app