Add like
Add dislike
Add to saved papers

MRNDR: Multihead Attention-Based Recommendation Network for Drug Repurposing.

As is well-known, the process of developing new drugs is extremely expensive, whereas drug repurposing represents a promising approach to augment the efficiency of new drug development. While this method can indeed spare us from expensive drug toxicity and safety experiments, it still demands a substantial amount of time to carry out precise efficacy experiments for specific diseases, thereby consuming a significant quantity of resources. Therefore, if we can prescreen potential other indications for selected drugs, it could result in substantial cost savings. In light of this, this paper introduces a drug repurposing recommendation model called MRNDR, which stands for M ulti-head attention-based R ecommendation N etwork for D rug R epurposing. This model serves as a prediction tool for drug-disease relationships, leveraging the multihead self-attention mechanism that demonstrates robust generalization capabilities. These capabilities stem not only from our extensive million-level training data set, BioRE ( Bio logy R ecommended E ntity data), but also from the utilization of the WRDS ( W eighted R epresentation D istance S core) algorithm proposed by us. The MRNDR model has achieved new state-of-the-art results on the GP-KG public data set, with an MRR (Mean Reciprocal Rank) score of 0.308 and a Hits@10 score of 0.628. This represents significant improvements of 4.7% (MRR) and 18.1% (Hits@10) over the current best-performing models. Additionally, to further validate the practical utility of the model, we examined results recommended by MRNDR that were not present in the training data set. Some of these recommendations have undergone clinical trials, as evidenced by their presence on ClinicalTrials.gov and the China Clinical Trials Center, indirectly confirming the applicability of MRNDR. The MRNDR model can predict the reusability of candidate drugs, reducing the need for manual expert assessments and enabling efficient drug repurposing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app