Add like
Add dislike
Add to saved papers

The Superior Effect of Radiofrequency With Targeted Ultrasound for Facial Rejuvenation by Inducing Hyaluronic Acid Synthesis: A Pilot Preclinical Study.

BACKGROUND: The level of dermal hyaluronic acid (HA) can be depleted by 75% at age 70. HA provides dermal hydration, volume, and thickness, making it a major component of the extracellular matrix. Restoration of dermal and epidermal HA can be achieved by combining radiofrequency (RF) energy and targeted ultrasound (TUS). The monopolar RF generates heat, with the TUS stimulating HA production. The heat induces a regenerative response in the skin, increasing the fibroblast activity and producing various extracellular matrix compounds, including HA.

OBJECTIVES: To investigate the effect of the simultaneous application of RF + TUS or RF + US on the stimulation of HA production.

METHODS: Twelve animals underwent 4 treatments. Six were treated with transcutaneous RF + TUS and 6 with the combination RF + US. The opposite untreated side served as a control. Punch biopsies of the skin were taken at baseline, immediately posttreatment, 1 month, and 2 months posttreatment. The tissue was evaluated with real-time quantitative polymerase chain reaction (RT-qPCR), matrix-assisted laser desorption (MALDI) and time of flight (TOF), and confocal microscopy.

RESULTS: The RT-qPCR focused on assessing the production of has1 and has2 , enzymes responsible for HA synthesis. RT-qPCR results of the RF + TUS group revealed a +98% and +45% increase in hyaluronic synthetase (HAS) 1 and HAS2 production after the treatments, respectively. The MALDI-TOF revealed a +224% increase in measured HA 2 months after the treatments. The changes were also visible in the confocal microscopy. The control group showed no significant ( P > .05) results in either of the evaluation methods.

CONCLUSIONS: Concurrent application of RF and TUS significantly enhances the natural regenerative processes in skin tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app