Add like
Add dislike
Add to saved papers

A simple and cost-effective technique to monitor the sublimation flow during primary drying of freeze-drying using shelf inlet/outlet temperature difference or chamber to condenser pressure drop.

As lyophilization continues to be a critical step in the manufacturing of sensitive biopharmaceuticals, challenges often arise during the scale up to commercial scale or the transfer from one manufacturing site to another. While data from the small-scale development of the lyophilization cycle is abundant it is typically much more difficult to extract important information from commercial scale cycles, due to the lack of process analytical technologies available on the commercial line. There is often a reluctance to include wireless temperature or pressure probes during GMP operations due to the additional contamination risk, and retrofitting equipment such as the TDLAS can be prohibitively expensive. Further, as products become more advanced, the cost of consuming the product or even the availability of material may limit the opportunities to run commercial scale trials. This paper presents two novel methods to garner critical cycle information to allow for the evaluation of cycle performance without the need for expensive analytical equipment, costly revalidation and line downtime. Critically, this can be achieved using commonly available temperature and capacitance probes on existing commercial scale equipment. The first method is a calorimetric method, based on quantifying the differences in heat transfer liquid temperature between the shelf inlet and shelf outlet. This change in temperature results from the on-going sublimation, an endo-thermic reaction occurring during lyophilization. The second method uses the differential pressure between the chamber and condenser resulting from the vapor flow from vial to condenser during primary drying. As stated by the authors both methods align well and provide valuable cycle characterization data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app