Add like
Add dislike
Add to saved papers

Development, preclinical evaluation and preliminary dosimetry profiling of SB03178, a first-of-its-kind benzo[h]quinoline-based fibroblast activation protein-α-targeted radiotheranostic for cancer imaging and therapy.

Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. nat Ga-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of nat Ga-SB03178 being ∼17 times higher than nat Ga-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68 Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68 Ga]Ga-SB04033. 177 Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177 Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68 Ga]Ga-/[177 Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app