Add like
Add dislike
Add to saved papers

Three-dimensional simulation of the influence of different flotation media in the dissolved air flotation tank through the population balance model.

Gas-liquid flow in the dissolved air flotation (DAF) tank was studied through computational fluid dynamics through the realizable k-ε model and the population balance model (PBM) to predict the gas content of different flotation mediums (air, carbon dioxide, and chlorine) at different heights of the separation zone in the DAF tank. Simultaneously, a particular focus was placed on studying the effects of bubble aggregation and breakage on gas content. The results indicated that there were virtually no bubbles present in the region below 0.1 m of the separation zone. The gas content in the separation zone could meet the needs for gas content in the DAF tank when all these three gases were adopted as flotation medium. The introduction of models for bubble aggregation and breakage resulted in lower gas content at the bottom of the separation zone and higher gas content at the top, aligning more closely with experimental data. Due to the structural similarity and similar physicochemical characteristics of carbon dioxide and water molecules, the impact of bubble aggregation and breakage on the gas content is minimal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app