Add like
Add dislike
Add to saved papers

Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.).

BMC Genomics 2024 Februrary 14
Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app