Add like
Add dislike
Add to saved papers

Efficient dissolution of cellulose in slow-cooling alkaline systems and interacting modes between alkali and urea at the molecular level.

Carbohydrate Research 2024 Februrary 10
The dissolution of microcrystalline cellulose (MCC) in a urea-NaOH system is beneficial for its mechanical processing. The apparent MCC solubility was greatly improved to 14 wt% under a slow-cooling condition with a cooling rate of -0.3 °C/min. The cooling curve or thermal history played a crucial role in the dissolution process. An exotherm (-54.7 ± 3 J/g MCC) was detected by DSC only under the slow-cooling condition, and the cryogenic dissolution of MCC was attributed to the exothermic interaction between MCC and solvent. More importantly, the low cooling rate promoted the dissolution of MCC by providing enough time for the diffusion of OH- and urea into MCC granules at higher temperatures. The Raman spectral data showed that the intramolecularly and intermolecularly hydrogen bonds in cellulose were cleaved by NaOH and urea, respectively. XPS and solid-state 13 C NMR results showed that hydrogen bonds were generated after dissolution, and a dual-hydrogen-bond binding mode between urea and cellulose was confirmed by DFT calculations. Both the decrease of enthalpy and increase of entropy dominated the spontaneity of MCC dissolution, and that is the reason for the indispensability of cryogenic environment. The high apparent solubility of MCC in the slow-cooling process and the dissolution mechanism are beneficial for the studies on cellulose modification and mechanical processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app