Add like
Add dislike
Add to saved papers

Adsorption of triblock copolymers confined between two plates: An analytical approach.

Journal of Chemical Physics 2024 Februrary 15
We present an approximate analytical approach to the adsorption problem of ABA triblock copolymers confined between two parallel plates in a θ solvent and give the expression of the propagator q(x, t) as a piece-wise function by solving the modified diffusion equation. In this way, the role of separation between the two plates, adsorption energy and block lengths on segment concentration profile, chain conformations, and interaction potential is then investigated, which agrees well with the numerical results. It is demonstrated that there are parallels between lengthening adsorbing A blocks and increasing surface affinity: strong adsorption and long adsorbing blocks favor the formation of loops and bridges, whereas more tails and free chains exist in the case of weak adsorption and short A blocks at large separations. For moderate and strong adsorptions, the bridging fraction begins to plummet at a separation larger than the end-to-end distance of non-adsorbing B block RB and becomes negligible at above 2RB owing to the entropy effect. The depth of the potential well in the interaction potential profile depends on the adsorption energy and A block length, while the location of the potential minimum corresponds to the onset of the sharp decrease in bridges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app