Add like
Add dislike
Add to saved papers

AKR1C3 silencing inhibits autophagy-dependent glycolysis in thyroid cancer cells by inactivating ERK signaling.

Thyroid cancer is a highly differentiated and poorly malignant tumor. Interfering with glycolysis has become an effective means of controlling cancer progression and autophagy is negatively correlated with glycolysis. Aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated to be highly expressed in thyroid cancer tissue and the higher AKR1C3 expression predicted the worse prognosis. We aimed to explore whether AKR1C3 could affect thyroid cancer progression by regulating autophagy-dependent glycolysis. AKR1C3 expression in thyroid cancer cells was detected by western blot. Then, AKR1C3 was knocked down by transfection with short hairpin RNA specific to AKR1C3 in the absence or presence of 3-methyladenine (3-MA) or PMA treatment. Cell cycle and apoptosis was detected by flow cytometry. Immunofluorescence staining was used to analyze LC3B expression. Extracellular acidification, glucose uptake and lactic acid secretion were detected. To evaluate the tumorigenicity of AKR1C3 insufficiency on thyroid cancer in vivo, TPC-1 cells with AKR1C3 knockdown were injected subcutaneously into nude mice. Then, cyclinD1 and Ki67 expression in tumorous tissues was measured by immunohistochemical analysis. Apoptosis was assessed by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Additionally, the expression of proteins related to cell cycle, apoptosis, glycolysis, autophagy, and extracellular signal-regulated kinase (ERK) signaling in cells and tumor tissues was assessed by western blot. Highly expressed AKR1C3 was observed in thyroid cancer cells. AKR1C3 knockdown induced cell cycle arrest and apoptosis of TPC-1 cells. Besides, autophagy was activated and glycolysis was inhibited following AKR1C3 silencing, and 3-MA treatment restored the impacts of AKR1C3 silencing on glycolysis. The further experiments revealed that AKR1C3 insufficiency inhibited ERK signaling and PMA application reversed AKR1C3 silencing-induced autophagy in TPC-1 cells. The in vivo results suggested that AKR1C3 knockdown inhibited the development of subcutaneous TPC-1 tumors in nude mice and inactivated the ERK signaling. Collectively, AKR1C3 silencing inhibited autophagy-dependent glycolysis in thyroid cancer by inactivating ERK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app