Add like
Add dislike
Add to saved papers

Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury.

BACKGROUND: Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected.

METHODS: Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing.

RESULT: After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery.

CONCLUSION: The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app