Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

A Magnetic Separation-Assisted High-Speed Homogenization Method for Large-Scale Production of Endosome-Derived Vesicles.

Extracellular vesicles (EVs) have attracted significant attention in physiological and pathological research, disease diagnosis, and treatment; however, their clinical translation has been limited by the lack of scale-up manufacturing approaches. Therefore, this protocol provides a magnetic separation-assisted high-speed homogenization method for the large-scale production of endosome-derived nanovesicles as a new type of exosome mimics (EMs) derived from the endosomes, which have about 100-time higher yield than conventional ultracentrifugation method. In this method, magnetic nanoparticles (MNPs) were internalized by parental cells via endocytosis and were subsequently accumulated within their endosomes. Then, MNPs-loaded endosomes were collected and purified by hypotonic treatment and magnetic separation. A high-speed homogenizer was utilized to break MNP-loaded endosomes into monodisperse nanovesicles. The resulting endosome-derived vesicles feature the same biological origin and structure, characterized by nanoparticle tracking analysis, transmission electron microscope, and western blotting. Their morphology and protein composition are similar to native EVs, indicating that EMs may potentially serve as a low-cost and high-yield surrogate of native EVs for clinical translations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app