Add like
Add dislike
Add to saved papers

Hydromorphone hydrochloride preconditioning combined with postconditioning attenuates myocardial ischemia/reperfusion injury in rats by improving mitochondrial function and activating the PI3K/Akt signaling pathway.

Thrombolytic therapy or percutaneous coronary intervention for myocardial infarction often cause myocardial ischemia/reperfusion injury (MIRI) and poor prognosis of patients. This study aimed to explore the protective effect and potential mechanism of hydromorphone hydrochloride (HH) on MIRI. Fifty Sprague-Dawley male rats were randomly divided into Sham group, I/R group, HH-pre group, HH-post group, and HH-pre + post group. Except Sham group, MIRI models were established by ligating and relaxing the left anterior descending coronary artery, followed by tail vein injection of HH (0.3 μmol/L) 10 min before ligation (HH-pre group), 10 min after reperfusion (HH-post group), and twice at the above two time points (HH-pre + post group). After intervention, the cardiac function of rats was evaluated by echocardiography, and the levels of myocardial injury markers, oxidative stress indicators, and mitochondrial function indicators were detected. Next, the myocardial infarction area was evaluated by 2,3,5-triphenyltetrazolium chloride staining, mitochondrial biogenesis, and phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway by western blot. Compared with the I/R group, HH intervention improved cardiac function, decreased myocardial infarction area, reduced serum myocardial injury markers, alleviated oxidative stress, improved mitochondrial function, up-regulated mitochondrial biogenesis, and activated PI3K/Akt signaling pathway. Moreover, the HH-pre + post group was superior to the HH-pre and HH-post groups in the above aspects. Collectively, HH had protective effect on MIRI rats, and HH preconditioning combined with postconditioning showed optimal efficacy. Such efficacy may be achieved by promoting mitochondrial biogenesis to improve mitochondrial function and reduce oxidative stress, and activating the PI3K/Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app