Add like
Add dislike
Add to saved papers

Metabolic phenotyping and global functional analysis facilitate metabolic signature discovery for tuberculosis treatment monitoring.

Tracking alterations in polar metabolite and lipid levels during anti-tuberculosis (TB) interventions is an emerging biomarker discovery and validation approach due to its sensitivity in capturing changes and reflecting on the host status. Here, we employed deep plasma metabolic phenotyping to explore the TB patient metabolome during three phases of treatment: at baseline, during intensive phase treatment, and upon treatment completion. Differential metabolites (DMs) in each period were determined, and the pathway-level biological changes were explored by untargeted metabolomics-guided functional interpretations that bypassed identification. We identified 41 DMs and 39 pathways that changed during intensive phase completion. Notably, levels of certain amino acids including histidine, bile acids, and metabolites of purine metabolism were dramatically increased. The altered pathways included those involved in the metabolism of amino acids, glycerophospholipids, and purine. At the end of treatment, 44 DMs were discovered. The levels of glutamine, bile acids, and lysophosphatidylinositol significantly increased compared to baseline; the levels of carboxylates and hypotaurine declined. In addition, 37 pathways principally associated with the metabolism of amino acids, carbohydrates, and glycan altered at treatment completion. The potential of each DM for diagnosing TB was examined using a cohort consisting of TB patients, those with latent infections, and controls. Logistic regression revealed four biomarkers (taurine, methionine, glutamine, and acetyl-carnitine) that exhibited excellent performance in differential diagnosis. In conclusion, we identified metabolites that could serve as useful metabolic signatures for TB management and elucidated underlying biological processes affected by the crosstalk between host and TB pathogen during treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app