Add like
Add dislike
Add to saved papers

Towards safer and efficient formulations: Machine learning approaches to predict drug-excipient compatibility.

Predicting drug-excipient compatibility is a critical aspect of pharmaceutical formulation design. In this study, we introduced an innovative approach that leverages machine learning techniques to improve the accuracy of drug-excipient compatibility predictions. Mol2vec and 2D molecular descriptors combined with the stacking technique were used to improve the performance of the model. This approach achieved a significant advancement in the predictive capacity as demonstrated by the accuracy, precision, recall, AUC, and MCC of 0.98, 0.87, 0.88, 0.93 and 0.86, respectively. Using the DE-INTERACT model as the benchmark, our stacking model could remarkably detect drug-excipient incompatibility in 10/12 tested cases, while DE-INTERACT managed to recognize only 3 out of 12 incompatibility cases in the validation experiments. To ensure user accessibility, the trained model was deployed to a user-friendly web platform (URL: https://decompatibility.streamlit.app/). This interactive interface accommodated inputs through various types, including names, PubChem CID, or SMILES strings. It promptly generated compatibility predictions alongside corresponding probability scores. However, the continual refinement of model performance is crucial before applying this model in practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app