Add like
Add dislike
Add to saved papers

Improving abdominal image segmentation with overcomplete shape priors.

The extraction of abdominal structures using deep learning has recently experienced a widespread interest in medical image analysis. Automatic abdominal organ and vessel segmentation is highly desirable to guide clinicians in computer-assisted diagnosis, therapy, or surgical planning. Despite a good ability to extract large organs, the capacity of U-Net inspired architectures to automatically delineate smaller structures remains a major issue, especially given the increase in receptive field size as we go deeper into the network. To deal with various abdominal structure sizes while exploiting efficient geometric constraints, we present a novel approach that integrates into deep segmentation shape priors from a semi-overcomplete convolutional auto-encoder (S-OCAE) embedding. Compared to standard convolutional auto-encoders (CAE), it exploits an over-complete branch that projects data onto higher dimensions to better characterize anatomical structures with a small spatial extent. Experiments on abdominal organs and vessel delineation performed on various publicly available datasets highlight the effectiveness of our method compared to state-of-the-art, including U-Net trained without and with shape priors from a traditional CAE. Exploiting a semi-overcomplete convolutional auto-encoder embedding as shape priors improves the ability of deep segmentation models to provide realistic and accurate abdominal structure contours.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app