Add like
Add dislike
Add to saved papers

Ionic Liquids Microenvironment Modulates the Interface Properties of g-C 3 N 4 for Boosting the Performance of Photodegradation and Infected Wound-Healing Therapy.

Small Methods 2024 Februrary 8
The improvement of photocatalytic activity of g-C3 N4 is expected for its advanced applications but remains a challenge due to the limitations of current strategies, such as single function, inefficiency, and uneconomical. Herein, a modified g-C3 N4 with improved interface properties is constructed through the modulation of the ionic microenvironment affected by ionic liquids (ILs) and exhibits a 2.3-fold enhanced photodegradation efficiency and a 3.5-fold enhanced reaction rate relative to pristine g-C3 N4 . It has demonstrated excellent performance in photo-therapy bacterial-infected wounds. Theoretical calculation indicated that the precursor can be regulated by designing the specific ILs microenvironment to form "ILs-Mel" clusters due to the diversity of interaction energy and electrostatic potential. The cluster results in uneven stress on the 2D plane, further inducing the reconstruction of the microstructure. The synergistic effect of cations and anions of ILs on regulating the interface properties of g-C3 N4 due to the change of skeleton structure during thermolysis of ILs. The microstructure, surface, and optical-electrical properties can be adjusted by selecting different cations of ILs, and the custom-made band structure and wettability can be obtained by selecting different anions. This work provides a facile strategy to modulate the interface properties of g-C3 N4 by building specific a microenvironment of precursor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app