Add like
Add dislike
Add to saved papers

Deep Learning-Assisted Diffusion Tensor Imaging for Evaluation of the Physis and Metaphysis.

J Imaging Inform Med 2024 Februrary 7
Diffusion tensor imaging of physis and metaphysis can be used as a biomarker to predict height change in the pediatric population. Current application of this technique requires manual segmentation of the physis which is time-consuming and introduces interobserver variability. UNET Transformers (UNETR) can be used for automatic segmentation to optimize workflow. Three hundred and eighty-five DTI scans from 191 subjects with mean age of 12.6 years ± 2.01 years were retrospectively used for training and validation. The mean Dice correlation coefficient was 0.81 for the UNETR model and 0.68 for the UNET. Manual extraction and segmentation took 15 min per volume, whereas both deep learning segmentation techniques took < 1 s per volume and were deterministic, always producing the same result for a given input. Intraclass correlation coefficient (ICC) for ROI-derived femur diffusion metrics was excellent for tract count (0.95), volume (0.95), and FA (0.97), and good for tract length (0.87). The results support the hypothesis that a hybrid UNETR model can be trained to replace the manual segmentation of physeal DTI images, therefore automating the process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app