Add like
Add dislike
Add to saved papers

Organ dose prediction for patients undergoing radiotherapy CBCT chest examinations using artificial intelligence.

Physica Medica : PM 2024 Februrary 6
PURPOSE: To propose an artificial intelligence (AI)-based method for personalized and real-time dosimetry for chest CBCT acquisitions.

METHODS: CT images from 113 patients who underwent radiotherapy treatment were collected for simulating thorax examinations using cone-beam computed tomography (CBCT) with the Monte Carlo technique. These simulations yielded organ dose data, used to train and validate specific AI algorithms. The efficacy of these AI algorithms was evaluated by comparing dose predictions with the actual doses derived from Monte Carlo simulations, which are the ground truth, utilizing Bland-Altman plots for this comparative analysis.

RESULTS: The absolute mean discrepancies between the predicted doses and the ground truth are (0.9 ± 1.3)% for bones, (1.2 ± 1.2)% for the esophagus, (0.5 ± 1.3)% for the breast, (2.5 ± 1.4)% for the heart, (2.4 ± 2.1)% for lungs, (0.8 ± 0.6)% for the skin, and (1.7 ± 0.7)% for integral. Meanwhile, the maximum discrepancies between the predicted doses and the ground truth are (14.4 ± 1.3)% for bones, (12.9 ± 1.2)% for the esophagus, (9.4 ± 1.3)% for the breast, (14.6 ± 1.4)% for the heart, (21.2 ± 2.1)% for lungs, (10.0 ± 0.6)% for the skin, and (10.5 ± 0.7)% for integral.

CONCLUSIONS: AI models that can make real-time predictions of the organ doses for patients undergoing CBCT thorax examinations as part of radiotherapy pre-treatment positioning were developed. The results of this study clearly show that the doses predicted by analyzed AI models are in close agreement with those calculated using Monte Carlo simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app