Add like
Add dislike
Add to saved papers

Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2.

IScience 2024 Februrary 17
Vascular calcification (VC) is recognized as a crucial risk factor for cardiovascular diseases. Our previous report revealed that the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) plays a role in this process. However, the underlying molecular mechanisms remain elusive. Notably, receptor-interacting protein kinase 1 (RIPK1) has been implicated in the development of cardiovascular diseases, yet its role and mechanisms in VC remain unexplored. To address this gap, we established models using chronic kidney disease mice and calcifying VSMCs to investigate the impact of RIPK1 on VC. Subsequently, a RIPK1-specific inhibitor (NEC-1) was applied in both in vitro and in vivo models. Our findings indicate significant activation of RIPK1 in calcified human arterial tissue, as well as in animal and cellular models. RIPK1 activation promotes the osteogenic transdifferentiation of VSMCs. Treatment with the NEC-1 substantially reduced VC. These results demonstrate that RIPK1 is a target for preventing VC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app