Add like
Add dislike
Add to saved papers

In Situ Multicolor Imaging of Photocatalytic Degradation Process of Permanganate on Single Bismuth-Based Metal-Organic Frameworks.

Inorganic Chemistry 2024 Februrary 6
Bismuth-based metal-organic frameworks (Bi-MOFs) have emerged as important photocatalysts for pollutant degradation applications. Understanding the photocatalytic degradation mechanism is key to achieving technological advantage. Herein, we apply dark-field optical microscopy (DFM) to realize in situ multicolor imaging of the photocatalytic degradation process of permanganate (MnO4 - ) on single CAU-17 Bi-MOFs. Three reaction kinetic processes such as surface adsorption, photocatalytic reduction, and disproportionation are revealed by combining the time-lapsed DFM images with optical absorption spectra, indicating that the photocatalytic reduction of purple MnO4 - first produces beige red MnO4 2- through a one-electron pathway, and then MnO4 2- disproportionates into yellow MnO2 on CAU-17. Meanwhile, we observe that the deposition of MnO2 cocatalysts enhances the surface adsorption reaction and the photocatalytic reduction of MnO4 - to MnO4 2- . Unexpectedly, it is found that isopropanol as a typical hole scavenger can stabilize MnO4 2- , avoiding disproportionation and causing the alteration of the photocatalytic reaction pathway from a one-electron avenue to a three-electron (1 + 2) process for producing MnO2 on CAU-17. This research opens up the possibility of comprehensively tracking and understanding the photocatalytic degradation reaction at the single MOF particle level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app