Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

High Throughput Screening Assessment of Reactive Oxygen Species (ROS) Generation using Dihydroethidium (DHE) Fluorescence Dye.

Reactive oxygen species (ROS) play a key role in the regulation of cellular metabolism in physiological and pathological processes. Physiological ROS production plays a central role in the spatial and temporal modulation of normal cellular functions such as proliferation, signaling, apoptosis, and senescence. In contrast, chronic ROS overproduction is responsible for a wide spectrum of diseases, such as cancer, cardiovascular disease, and diabetes, among others. Quantifying ROS levels in an accurate and reproducible manner is thus essential to understanding normal cellular functionality. Fluorescence imaging-based methods to characterize intra-cellular ROS species is a common approach. Many of the imaging ROS protocols in the literature use 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) dye. However, this dye suffers from significant limitations in its usage and interpretability. The current protocol demonstrates the use of a dihydroethidium (DHE) fluorescent probe as an alternative method to quantify total ROS production in a high-throughput setting. The high throughput imaging platform, CX7 Cellomics, was used to measure and quantify the ROS production. This study was conducted in three hepatocellular cancer cell lines - HepG2, JHH4, and HUH-7. This protocol provides an in-depth description of the various procedures involved in the assessment of ROS within the cells, including - preparation of DHE solution, incubation of cells with DHE solution, and measurement of DHE intensity necessary to characterize the ROS production. This protocol demonstrates that DHE fluorescent dye is a robust and reproducible choice to characterize intracellular ROS production in a high-throughput manner. High throughput approaches to measure ROS production are likely to be helpful in a variety of studies, such as toxicology, drug screening, and cancer biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app