Add like
Add dislike
Add to saved papers

FARMS: Framework for Animal and Robot Modeling and Simulation.

bioRxiv 2023 September 27
The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to neuromechanical simulations for modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. In particular, we show how we used FARMS to study amphibious locomotion by presenting experimental demonstrations across morphologies and environments based on neural controllers with central pattern generators and sensory feedback circuits models. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app