Add like
Add dislike
Add to saved papers

Identification of key modules in metabolic syndrome induced by second-generation antipsychotics based on co-expression network analysis.

BACKGROUND: Second-generation antipsychotics (SGAs) frequently cause metabolic syndrome (MetS), which raises the risk of heart disease, type 2 diabetes, morbid obesity, atherosclerosis, and hypertension. MetS also impairs cognitive function in patients with schizophrenia. However, the fundamental reasons of MetS caused by SGAs are not yet fully understood. Thus, we aimed to identify potential therapeutic targets for MetS induced by SGAs.

METHODS: The serum biochemical parameters and the RNA-sequencing of peripheral blood mononuclear cells were measured in three groups (healthy controls and patients with schizophrenia with and without MetS taking SGAs). The study of the weighted gene co-expression network was utilized to pinpoint modules that were significantly connected to clinical markers.

RESULTS: Statistical analysis showed significant differences in triglyceride and high-density lipoprotein among the three groups. The TNF signaling pathway, TGF-β signaling pathway, fatty acid metabolism, NF-kappa B signaling pathway, MAPK signaling pathway, and Toll-like receptor signaling pathway were the pathways that were primarily enriched in the two unique co-expression network modules that were found. Finally, five specific genes (TNF, CXCL8, IL1B, TIMP1, and ESR1) associated with metabolism and immunity pathways were identified.

CONCLUSIONS: This study indicated that SGAs differentially induced MetS of patients with schizophrenia through metabolic and inflammation-related pathways. Therefore, the potential side effects of drugs on inflammatory processes need to be considered when using SGAs for the treatment of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app