Add like
Add dislike
Add to saved papers

Expression in CHO cells of a bacterial biosynthetic pathway producing a small non-ribosomal peptide aldehyde prevents proteolysis of recombinant proteins.

Metabolic Engineering 2024 January 29
A significant problem during recombinant protein production is proteolysis. One of the most common preventive strategies is the addition of protease inhibitors, which has drawbacks, such as their short half-life and high cost, and their limited prevention of extracellular proteolysis. Actinomycetes produce the most commonly used inhibitors, which are non-ribosomal small aldehydic peptides. Previously, an unprecedented biosynthetic route involving a Condensation-minus non-ribosomal peptide synthetase (NRPSs) and a tRNA utilizing enzyme (tRUE) was shown to direct the synthesis of one of these inhibitor peptides, livipeptin. Here, we show that expression of the livipeptin biosynthetic pathway encoded by the lvp genes in CHO cells resulted in the production of this metabolite with cysteine protease inhibitory activity, implying that mammalian tRNAs were recruited by the lvp system. CHO cells transiently expressing the biosynthetic pathway produced livipeptin without affecting cell growth or viability. Expression of the lvp system in CHO cells producing two model proteins, secreted alkaline phosphatase (hSeAP) and a monoclonal antibody, resulted in higher specific productivity with reduced proteolysis. We show for the first time that the expression of a bacterial biosynthetic pathway is functional in CHO cells, resulting in the efficient, low-cost synthesis of a protease inhibitor without adverse effects on CHO cells. This expands the field of metabolic engineering of mammalian cells by expressing the overwhelming diversity of actinomycetes biosynthetic pathways and opens a new option for proteolysis inhibition in bioprocess engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app