Add like
Add dislike
Add to saved papers

Isolation of a Bent Dysprosium Bis(amide) Single-Molecule Magnet.

The isolation of formally two-coordinate lanthanide (Ln) complexes is synthetically challenging, due to predominantly ionic Ln bonding regimes favoring high coordination numbers. In 2015, it was predicted that a near-linear dysprosium bis(amide) cation [Dy{N(Sii Pr3 )2 }2 ]+ could provide a single-molecule magnet (SMM) with an energy barrier to magnetic reversal ( U eff ) of up to 2600 K, a 3-fold increase of the record U eff for a Dy SMM at the time; this work showed a potential route to SMMs that can provide high-density data storage at higher temperatures. However, synthetic routes to a Dy complex containing only two monodentate ligands have not previously been realized. Here, we report the synthesis of the target bent dysprosium bis(amide) complex, [Dy{N(Sii Pr3 )2 }2 ][Al{OC(CF3 )3 }4 ] ( 1-Dy ), together with the diamagnetic yttrium analogue. We find U eff = 950 ± 30 K for 1-Dy , which is much lower than the predicted values for idealized linear two-coordinate Dy(III) cations. Ab initio calculations of the static electronic structure disagree with the experimentally determined height of the U eff barrier, thus magnetic relaxation is faster than expected based on magnetic anisotropy alone. We propose that this is due to enhanced spin-phonon coupling arising from the flexibility of the Dy coordination sphere, in accord with ligand vibrations being of equal importance to magnetic anisotropy in the design of high-temperature SMMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app