Add like
Add dislike
Add to saved papers

Cryoablation triggers type I interferon-dependent antitumor immunity and potentiates immunotherapy efficacy in lung cancer.

BACKGROUND: Cryoablation is a minimally invasive option for patients with medically inoperable non-small cell lung cancer (NSCLC) and can trigger abscopal immune-regulatory effects. However, it remains unclear how cryoablation affects the host-level immune response in NSCLC. In this study, we investigated the local and systemic immunological effects of cryoablation and the potential of combining cryoablation with programmed cell death protein 1 (PD-1) blockade to boost immunotherapy efficacy in NSCLC.

METHODS: We first investigated systemic immunological effects induced by cryoablation in patients with early-stage NSCLC. Subsequently, we explored cryoablation-induced antitumor immunity and the underlying biological mechanisms using KP ( Kras G12D/+ , Tp53 -/- ) mutant lung cancer cell allograft mouse models. Moreover, the synergistic efficacy of cryoablation and PD-1 blockade was explored in both mouse models and patients with unresectable NSCLC.

RESULTS: We found that cryoablation significantly increased circulating CD8+ T cell subpopulations and proinflammatory cytokines in patients with early-stage NSCLC. In lung cancer cell allograft mouse models, we demonstrated that cryoablation resulted in abscopal growth inhibition of contralateral, non-ablated tumors. Integrated analysis of bulk, single-cell RNA and T cell receptor (TCR) sequencing data revealed that cryoablation reprogrammed the intratumoral immune microenvironment and increased CD8+ T cell infiltration with higher effector signature, interferon (IFN) response, and cytolytic activity. Mechanistically, cryoablation promoted antitumor effect through the STING-dependent type I IFN signaling pathway, and type I IFN signaling blockade attenuated this antitumor effect. We also found that the combination of PD-1 blockade with cryoablation further inhibited tumor growth compared with either treatment alone in an allograft mouse model. Moreover, the combination therapy induced notable tumor suppression and CD8+ T cell infiltration in patients with unresectable NSCLC.

CONCLUSIONS: Our results provide mechanistic insights into how cryoablation triggers the antitumor immune effect in lung cancer, thereby potentiating programmed cell death ligand 1 (PD-L1)/PD-1 blockade efficacy in the clinical treatment of NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app