Add like
Add dislike
Add to saved papers

Evaluation of robustness of optimization methods in breast intensity-modulated radiation therapy using TomoTherapy.

Intensity-modulated radiation therapy (IMRT) has become a popular choice for breast cancer treatment. We aimed to evaluate and compare the robustness of each optimization method used for breast IMRT using TomoTherapy. A retrospective analysis was performed on 10 patients with left breast cancer. For each optimization method (clipping, virtual bolus, and skin flash), a corresponding 50 Gy/25 fr plan was created in the helical and direct TomoTherapy modes. The dose-volume histogram parameters were compared after shifting the patients anteriorly and posteriorly. In the helical mode, when the patient was not shifted, the median D1cc (minimum dose delivered to 1 cc of the organ volume) of the breast skin for the clipping and virtual bolus plans was 52.2 (interquartile range: 51.9-52.6) and 50.4 (50.1-50.8) Gy, respectively. After an anterior shift, D1cc of the breast skin for the clipping and virtual bolus plans was 56.0 (55.6-56.8) and 50.9 (50.5-51.3) Gy, respectively. When the direct mode was used without shifting the patient, D1cc of the breast skin for the clipping, virtual bolus, and skin flash plans was 52.6 (51.9-53.1), 53.4 (52.6-53.9), and 52.3 (51.7-53.0) Gy, respectively. After shifting anteriorly, D1cc of the breast skin for the clipping, virtual bolus, and skin flash plans was 55.6 (54.1-56.4), 52.4 (52.0-53.0), and 53.6 (52.6-54.6) Gy, respectively. The clipping method is not sufficient for breast IMRT. The virtual bolus and skin flash methods were more robust optimization methods according to our analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app