Add like
Add dislike
Add to saved papers

Quantum Secure Multi-Party Summation with Graph State.

Entropy 2024 January 18
Quantum secure multi-party summation (QSMS) is a fundamental problem in quantum secure multi-party computation (QSMC), wherein multiple parties compute the sum of their data without revealing them. This paper proposes a novel QSMS protocol based on graph state, which offers enhanced security, usability, and flexibility compared to existing methods. The protocol leverages the structural advantages of graph state and employs random graph state structures and random encryption gate operations to provide stronger security. Additionally, the stabilizer of the graph state is utilized to detect eavesdroppers and channel noise without the need for decoy bits. The protocol allows for the arbitrary addition and deletion of participants, enabling greater flexibility. Experimental verification is conducted to demonstrate the security, effectiveness, and practicality of the proposed protocols. The correctness and security of the protocols are formally proven. The QSMS method based on graph state introduces new opportunities for QSMC. It highlights the potential of leveraging quantum graph state technology to securely and efficiently solve various multi-party computation problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app