Add like
Add dislike
Add to saved papers

Investigating the functionalization of liposomes with NFL-TBS. 40-63 peptide as a promising drug delivery system.

The NFL-peptide was discovered almost 20 years ago, and its targeting properties were assessed alone or in combination with lipid nanocapsules (LNC), magnetic porous silicon nanorods, or gold nanoparticles. Results highlighted a better targeting of cancer cells, in particular glioblastoma and pancreas cancer. Considering the large use of liposomes (LPs) as an hydrophilic drug delivery system, this study explored the possibility to functionalize liposomes with three different sequences of NFL-peptides: native (NFL-peptide), biotinylated (BIOT-NFL) and coupled to fluorescein (FAM-NFL). Dynamic Light Scattering (DLS) complemented by cryo-electron microscopy (CEM) showed a peculiar ultrastructural arrangement between NFL-peptides and liposomes. Based on this architectural interaction, we investigated the biological contribution of these peptides in LPs-DiD glioblastoma cellular uptake. Flow cytometry complemented by confocal microscopy experiments demonstrated a consequent and systematic increased uptake of LPs-DiD into F98 cells when their surface was decorated with NFL-peptides. The intra-cellular distribution of these liposomes via an organelle tracker indicated the presence of LPs-DiD in lysosomes after 4 hours. Based on the properties of this NFL-peptide, we showed in this work the crucial role of NFL peptide as an effective and promising actor to potentiate nanoparticles entry in glioblastoma cell lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app