Add like
Add dislike
Add to saved papers

Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium.

JCI Insight 2024 January 17
Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increase in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel diseases and sepsis. Ablation of the Cdr1as locus from the mouse genome enhances renewal of the intestinal mucosa, promotes injury-induced epithelial regeneration, and protects the mucosa against colitis. We found approximately 40 microRNAs, including microRNA miR-195, differentially express between intestinal mucosa of Cdr1as knockout (-/-) versus littermate mice. Increasing the levels of Cdr1as inhibits intestinal epithelial repair after wounding in cultured cells and represses growth of intestinal organoids cultured ex vivo, but this inhibition is abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium is the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app