Add like
Add dislike
Add to saved papers

Important role of pore-filling mechanism in separating naproxen from water by micro-mesoporous carbonaceous material.

Commercial micro-mesoporous carbonaceous material (MCM; 56.8% mesopores) was applied for investigating the removal phenomenon of naproxen drug in aqueous solutions through batch adsorption experiments. Results demonstrated that the adsorption capacity of MCM to naproxen was slightly affected by different pHeq (2.0-11) and ionic strength (0-1 M NaCl). Adsorption kinetics, isotherms, thermodynamics, and mechanisms were evaluated at pH 7.0. Adsorption kinetics indicated the rate constants for adsorption (0.2 × 10-3  L/(mg × min) and desorption (0.076/min) and the adsorption equilibrium constant (2.6 × 10-3  L/mg). Adsorption isotherm showed that MCM exhibited a high-affinity adsorption capacity to naproxen (even at low concentrations) and its Langmuir maximum adsorption capacity (Qmax ) was 252.7 mg/g at 25°C. Adsorption thermodynamics proved that the adsorption process was endothermic and physisorption (ΔH° = 9.66 kJ/mol). The analysis result of pore size distribution demonstrated that the internal pore structure of MCM was appropriate for adsorbing naproxen molecules. Pore-filing mechanism (pore diffusion phenomenon) was confirmed by a considerable decrease in BET-surface area (585 m2 /g) and total pore volume (0.417 cm3 /g) of MCM after adsorbing naproxen (~1000 mg/L and pH 7.0) at 5 min (341 and 0.256), 60 min (191 and 0.205), 120 min (183 and 0.193), 360 min (144 and 0.175), and 24 h (71.6 m2 /g and 0.123 cm3 /g, respectively). The pore diffusion occurred rapidly (even at the initial adsorption period of 5 min). The FTIR technique was applied to identify the existence of C-H···π and n-π interaction. π-π interaction (evaluated through ID /IG ratio and C=C band) played a minor contribution in adsorption mechanisms. The ID /IG ratio (determined by the Raman technique) of MCM before adsorption (1.195) was similar to that after adsorption (1.190), and the wavenumber (C=C band; its FTIR spectrum) slightly shifted from 1638 to 1634 cm-1 after adsorption. A decrease in the Qmax value of MCM from 249 to 217 (H2 O2 -oxidized MCM) or to 224 mg/g (HNO3 -oxidized MCM) confirmed the presence of π-π interaction. Electrostatic attraction was a minor contribution. MCM can serve as a promising material for removing naproxen from water environment through a pore-filling mechanism. PRACTITIONER POINTS: Pore-filling mechanism was proposed by comparing textural properties of MCM before and after adsorbing naproxen. C-H···π and n-π interactions were identified via FTIR technique. π-π interaction was observed by FTIR and Raman techniques. Oxidation of MCM with HNO3 or H2 O2 was a helpful method to explore π-π interaction. Electrostatic attraction was explained through studies: effects of pH and NaCl along with desorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app