Add like
Add dislike
Add to saved papers

Ascites exosomal lncRNA PLADE enhances platinum sensitivity by inducing R-loops in ovarian cancer.

Oncogene 2024 January 16
Cisplatin resistance is a major cause of therapeutic failure in patients with high-grade serous ovarian cancer (HGSOC). Long noncoding RNAs (lncRNAs) have emerged as key regulators of human cancers; however, their modes of action in HGSOC remain largely unknown. Here, we provide evidence to demonstrate that lncRNA Platinum sensitivity-related LncRNA from Ascites-Derived Exosomes (PLADE) transmitted by ascites exosomes enhance platinum sensitivity in HGSOC. PLADE exhibited significantly decreased expression in ascites exosomes and tumor tissues, as well as in the corresponding metastatic tumors from patients with HGSOC cisplatin-resistance. Moreover, HGSOC patients with higher PLADE expression levels exhibited longer progression-free survival. Gain- and loss-of-function studies have revealed that PLADE promotes cisplatin sensitivity by suppressing cell proliferation, migration and invasion, and enhancing apoptosis in vitro and in vivo. Furthermore, the functions of PLADE in increasing cisplatin sensitivity were proven to be transferred by exosomes to the cultured recipient cells and to the adjacent tumor tissues in mouse models. Mechanistically, PLADE binds to and downregulates heterogeneous nuclear ribonucleoprotein D (HNRNPD) by VHL-mediated ubiquitination, thus inducing an increased amount of RNA: DNA hybrids (R-loop) and DNA damage, consequently promoting cisplatin sensitivity in HGSOC. Collectively, these results shed light on the understanding of the vital roles of long noncoding RNAs in cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app