Add like
Add dislike
Add to saved papers

Magnetic resonance imaging of blood perfusion rate based on Helmholtz decomposition of heat flux.

OBJECTIVE: Thermal property (TP) maps of human tissues are useful for tumor treatment and diagnosis. In particular, the blood perfusion rate is significantly different for tumors and healthy tissues. Noninvasive techniques that reconstruct TPs from the temperature measured via magnetic resonance imaging (MRI) by solving an inverse bioheat transfer problem have been developed. A few conventional methods can reconstruct spatially varying TP distributions, but they have several limitations. First, most methods require the numerical Laplacian computation of the temperature, and hence they are sensitive to noise. In addition, some methods require the division of a region of interest (ROI) into sub-regions with homogeneous TPs using prior anatomical information, and they assume an unmeasurable initial temperature distribution. We propose a novel robust reconstruction method without the division of an ROI or the assumption of an initial temperature distribution.

APPROACH: The proposed method estimates blood perfusion rate maps from relative temperature changes. This method avoids the computation of the Laplacian by using integral representations of the Helmholtz decomposition of the heat flux.

MAIN RESULT: We compare the reconstruction results of the conventional and proposed methods using numerical simulations. The results indicate the robustness of the proposed method.

SIGNIFICANCE: This study suggests the feasibility of thermal property mapping with MRI using the robust proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app