Add like
Add dislike
Add to saved papers

An impedance labeling free electrochemical aptamer sensor based on tetrahedral DNA nanostructures for doxorubicin determination.

Mikrochimica Acta 2024 January 14
Based on the electrochemical impedance method, a marker-free biosensor with aptamer as a biometric element was developed for the determination of doxorubicin (DOX). By combining aptamer with rigid tetrahedral DNA nanostructures (TDNs) and fixing them on the surface of gold electrode (GE) as biometric elements, the density and directivity of surface nanoprobes improved, and DOX was captured with high sensitivity and specificity. DOX was captured by immobilized aptamers on the GE, which inhibited electron transfer between the GE and [Fe(CN)6]3- /4- in solution, resulting in a change in electrochemical impedance. When the DOX concentration was between 10.0 and 100.0 nM, the aptasensor showed a linear relationship with charge transfer resistance, the relative standard deviation (RSD) ranged from 3.6 to 5.9%, and the detection limit (LOD) was 3.0 nM. This technique offered a successful performance for the determination of the target analyte in serum samples with recovery in the range 97.0 to 99.6% and RSD ranged from 4.8 to 6.5%. This method displayed the advantages of fast response speed, good selectivity, and simple sensor structure and showed potential application in therapeutic drug monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app