Add like
Add dislike
Add to saved papers

Bifurcation analysis of multistability and hysteresis in a model of HIV infection.

The infectious disease caused by human immunodeficiency virus type 1 (HIV-1) remains a serious threat to hu- man health. The current approach to HIV-1 treatment is based on the use of highly active antiretroviral therapy, which has side effects and is costly. For clinical practice, it is highly important to create functional cures that can enhance immune control of viral growth and infection of target cells with a subsequent reduction in viral load and restoration of the immune status. HIV-1 control efforts with reliance on immunotherapy remain at a conceptual stage due to the complexity of a set of processes that regulate the dynamics of infection and immune response. For this reason, it is extremely important to use methods of mathematical modeling of HIV-1 infection dynamics for theoretical analysis of possibilities of reducing the viral load by affecting the immune system without the usage of antiviral therapy. The aim of our study is to examine the existence of bi-, multistability and hysteresis properties with a meaningful mathematical model of HIV-1 infection. The model describes the most important blocks of the processes of interaction between viruses and the human body, namely, the spread of infection in productively and latently infected cells, the appearance of viral mutants and the develop- ment of the T cell immune response. Furthermore, our analysis aims to study the possibilities of transferring the clinical pattern of the disease from a more severe state to a milder one. We analyze numerically the conditions for the existence of steady states of the mathematical model of HIV-1 infection for the numerical values of model parameters correspond- ing to phenotypically different variants of the infectious disease course. To this end, original computational methods of bifurcation analysis of mathematical models formulated with systems of ordinary differential equations and delay differ- ential equations are used. The macrophage activation rate constant is considered as a bifurcation parameter. The regions in the model parameter space, in particular, for the rate of activation of innate immune cells (macrophages), in which the properties of bi-, multistability and hysteresis are expressed, have been identified, and the features characterizing transi- tion kinetics between stable equilibrium states have been explored. Overall, the results of bifurcation analysis of the HIV-1 infection model form a theoretical basis for the development of combination immune-based therapeutic approaches to HIV-1 treatment. In particular, the results of the study of the HIV-1 infection model for parameter sets corresponding to different phenotypes of disease dynamics (typical, long-term non-progressing and rapidly progressing courses) indicate that an effective functional treatment (cure) of HIV-1-infected patients requires the development of a personalized ap- proach that takes into account both the properties of the HIV-1 quasispecies population and the patient's immune status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app