Add like
Add dislike
Add to saved papers

Identification of a rare [ G γ( A γδβ) 0 ] -thalassemia using tandem mass spectrometry.

Proteomics 2024 January 12
Thalassemias are a group of inherited monogenic disorders characterized by defects in the synthesis of one or more of the globin chain subunits of the hemoglobin tetramer. Delta-beta (δβ-) thalassemia has large deletions in the β globin gene cluster involving δ- and β-globin genes, leading to absent or reduced synthesis of both δ- and β-globin chains. Here, we used direct globin-chain analysis using tandem mass spectrometry for the diagnosis of δβ-thalassemia. Two cases from unrelated families were recruited for the study based on clinical and hematological evaluation. Peptides obtained after trypsin digestion of proteins extracted from red blood cell pellets from two affected individuals and their parents were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometric analysis revealed a severe reduction in δ, β, and Aγ globin proteins with increased G γ globin protein in the affected individuals. The diagnosis of G γ(A γδβ)0 -thalassemia in the homozygous state in the affected individuals and in the heterozygous state in the parents was made from our results. The diagnosis was confirmed at the genetic level using multiplex ligation-dependent probe amplification (MLPA). Our findings demonstrate the utility of direct globin protein quantitation using LC-MS/MS to quantify individual globin proteins reflecting changes in globin production. This approach can be utilized for accurate and timely diagnosis of hemoglobinopathies, including rare variants, where existing diagnostic methods provide inconclusive results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app